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levels of noise reduction for chaotic vector time series corrupted by observational noises with a noise-to-signal
ratio of up to 300%.
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I. INTRODUCTION

This research treats the noise reduction of vector chaotic
time series corrupted by observational noise of large ampli-
tude. The aim is to isolate the deterministic component of the
signal. The goal is more than merely detecting chaos. A to-
tally or partially cleaned signal can be used for accurate
short-term forecasting of its deterministic component and to
improve the forecasting of its probable long-term behavior.

Early research on noise reduction �1–8� was based on
local linear estimations of the unknown dynamics using
least-squares methods. The algorithms proposed in these pa-
pers showed the possibility of separating the signal from the
noise for time series of large lengths and low or moderate
noise amplitudes. These algorithms have two intrinsic limi-
tations that can be insubstantial for noises of small amplitude
but which may be crucial for the analysis of chaotic time
series corrupted by noises of moderate or large amplitudes:

�i� The inaccuracy of the least-squares method in the local
estimation of the dynamics was recognized already in the
early literature on noise reduction �7,9�. All the nonparamet-
ric algorithms were, however, based on this method.

�ii� All noise reduction algorithms use an iterative proce-
dure that takes the output of the algorithm as the input in the
next iteration. If the method is to be efficient, there must be
a significant difference between the noise levels of the out-
puts of the first and the final iterations. For time series cor-
rupted by noises of large amplitude, the neighborhoods used
in estimating the local dynamics in the early iterations must
contain a significant fraction of the data points, whereas in
the final iterations the use of big neighborhoods is clearly
inappropriate due to the errors caused by nonlinearities. In
order to design an efficient algorithm, it is crucial to have
efficient criteria for determining the optimal sizes of the
neighborhoods to be used in the local estimations of the dy-
namics at each iteration.

Issue �i� above was addressed in our previous paper �10�
using the theory of measurement error models �11�. This
theory gives unbiased and consistent estimators which, for
Gaussian errors, are those of maximum likelihood. Such es-
timators can be regarded as a local linear projection onto an
optimal linear subspace, with respect to a metric that incor-
porates the information contained in the error covariance ma-
trix. Judd �12� pointed out the failure of the maximum like-

lihood methods to identify the true trajectory of a chaotic
dynamical system specially in the case of large noise. Judd
also observed that the residuals present too many outliers and
in general their distribution is not consistent with the original
distribution of the noise. Our results confirm such observa-
tion; the kurtosis of the residuals are considerably higher that
the given by the Gaussian distribution. We overcome this
difficulty through an smoothing device based on averaging
multiple estimations of the value of each clean data point.

In this paper we address the issue of overcoming the basic
limitation �ii� pointed out above. Our adaptive neighbor-
hoods technique is based on a statistical test with null com-
putational cost. At a given iteration, it determines from the
properties and level of the remaining noise a single uniform
size and shape for the neighborhoods of all data points. The
criterion used for determining the neighborhoods is to keep
their sizes as small as possible while guaranteeing, with a
given confidence level, that the relevant information is con-
tained in the neighborhoods. As the number of iterations in-
creases, the noise level decreases and the sizes of the neigh-
borhoods reduce accordingly, thus minimizing the errors due
to nonlinearity. Another issue addressed when constructing
the neighborhoods is that of determining their optimal
shapes. Our algorithm is designed for vector time series and
if the degree of uncertainty in the observed state variables is
different then the appropriate neighborhoods will be non-
spherical. They should be instead ellipsoids for which the
semiaxial lengths are related to the uncertainties in the cor-
responding coordinates.

The results that we obtain with our algorithm are good for
noises of small and medium amplitudes. Furthermore they
are remarkable for short length time series corrupted by
noises of large amplitude: we obtain a noise reduction of up
to 84% for a Henon time series of only 500 data points with
a 300% noise-to-signal ratio. Such a result is achieved be-
cause the algorithm takes full advantage of the heteroskedas-
ticity of the noise �the noise-to-signal ratio is 10% in the first
component and 300% in the second component of the time
series�. The lower level of uncertainty in the first coordinate
allows noise reduction in the second coordinate out of reach
for existing algorithms, which have until now not been used
to analyze chaotic noisy time series with noise-to-signal ra-
tios in such a large range.

Kern et al. �13� also proposed an adaptive neighborhood
criterion. At each iteration and for each point, they take
neighborhoods of different sizes and choose that which opti-
mizes the quality of the best linear fit to the local dynamics.
They showed their method to be advantageous only in the*mmoranca@ccee.ucm.es
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case of noises of medium amplitudes, but for noises of small
or large amplitudes, they do not find justified the high com-
putational cost required.

Efficient noise reduction algorithms based also on local
linear projections into optimal linear subspaces are those de-
veloped for speech enhancement. The method consists of
minimizing the signal distortion while the residual noise en-
ergy is maintained below some given threshold �14–16�. For
this type of time series, almost periodic, a method for the
automatic detection of the best neighborhood size, based on
recurrence plots, is the given in �17�.

The paper is organized as follows. In Sec. II we describe
our algorithm, focusing attention on the local linear estima-
tion of the dynamics using the theory of measurement error
models and on the adaptive neighborhoods method. Section
III presents some results obtained by our algorithm for
Henon and Lorenz time series corrupted by noises of large
noise-to-signal ratio.

II. ALGORITHM

We assume that the observed time series �Xi , i=1,
. . . ,N��Rd is the sum of an unknown deterministic time
series �si , i=1, . . . ,N� and an unknown stochastic time series
�ei , i=1, . . . ,N�, where ei are independent and identically dis-
tributed �i.i.d.� random variables with null mean. Then Xi
=si+ei, 1� i�N, and si+1= f�si�, where f :M �Rd→M is an
unknown smooth chaotic dynamics. The aim of noise reduc-
tion algorithms is the separation of the deterministic compo-
nent of the time series from the observational noise.

The noise level in the jth component of the observed time
series is given by the noise-to-signal ratio

�RNS� j ª��i=1

N
��ei� j�2

�i=1

N
��si� j�2

, j = 1, . . . ,d , �1�

where �si� j and �ei� j denote the jth components of si and ei
respectively. We denote by RNS the vector whose compo-
nents are �RNS� j , j=1, . . . ,d.

The algorithm we design takes as input data the vector
time series �Xi , i=1, . . . ,N� instead of a scalar time series as
do most existing noise reduction algorithms.

A. Local estimations of the dynamics and noise reduction

The principal technique used in noise reduction algo-
rithms is local orthogonal projection of the data on optimal
linear subspaces, which is equivalent to finding the best local
linear estimations of the unknown dynamics. This technique
is also used in the forecasting problem, for the estimation of
the Lyapunov spectrum �18,19�, and for the estimation from
a time series of the degrees of freedom of a dynamical sys-
tem �20�.

Let si be any point of the clean time series and let Ui be a
small neighborhood of si. Since f is a differentiable dynam-
ics,

f�s� − f�si� 	 Df�si��s − si�, for s � Ui,

where Df�si� is the tangent map of f at si. The tangent space
y= f�si�+Df�si��s−si� is the best d-dimensional linear sub-

space of R2d through (si , f�si�) for the data points �(s , f�s�),
for s�Ui�. Such data points are arbitrarily close to this tan-
gent space when the size of Ui is sufficiently small. In �21�,
it is shown how to estimate Df�si� from a time series and
what are the conditions guaranteeing that such estimations
converge to the tangent map.

The effect of the noise is to separate the observed data
points from the tangent spaces. Then the noise can be par-
tially removed by projecting the observed data points on the
best d-dimensional linear subspaces through �
Xi� , 
Xi+1��,
where 
Xi�= 1

#Ui
� j:Xj�Ui

X j, #Ui denotes the number of points
within Ui, and Ui is now a small neighborhood of Xi. Since
the errors have null mean, the point �
Xi� , 
Xi+1�� is likely to
be closer to �si ,si+1� than the point �Xi ,Xi+1� is and it is
better to seek the best linear subspace through �
Xi� , 
Xi+1��
rather than that through �Xi ,Xi+1� �see Fig. 1�.

A fact to be considered is that the unknown dynamics is
chaotic. Then a small ball Bi centered at si is mapped by
f onto an ellipsoid centered at si+1 with the principal axes
oriented in the directions of the unstable manifold at si.
Therefore a local estimation of f based on the data points
�X j − 
Xi� ,X j+1− 
Xi+1��, for X j �Ui, is likely to be good on
the unstable manifold and poor on the stable manifold. Re-
ciprocally the ball Bi is mapped by f−1 onto an ellipsoid
centered at si−1 and with the principal axes oriented in the
directions of the stable manifold at si. This indicates that in
order to obtain good estimations of the clean values of the
time series using local estimations of the dynamics, we
should incorporate information about the past, the present,
and the future as was already pointed out by Grassberger
et al. �3�.

This is done by taking the best d-dimensional linear sub-
space Ti �according to a criterion described below� for the
data points �Z j − 
Zi� :Z jª �X j−1 ,X j ,X j+1� ,X j �Ui� and then
projecting the points Z j − 
Zi� onto Ti. Then the estimation of
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FIG. 1. �Color� Confidence ellipsoids for �0=0.1 at two points
of a Henon time series with N=5000 data points corrupted by
Gaussian noise with noise level RNS= �1% ,40%�. Observe the dif-
ference between the clean �blue circles� and the noisy data �black
squares� at which the neighborhood is constructed and the conve-
nience of taking the best linear subspaces through the mean points
of the neighborhoods instead of taking them through the observed
noisy points.
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z j ª �s j−1,s j,s j+1� �2�

obtained from the neighborhood Ui is

ẑ j
i = 
Zi� + PTi

�Z j − 
Zi�� , �3�

where PTi
Z denotes the orthogonal projection, with respect

to the metric used to obtain Ti, of the vector Z onto Ti. The
optimization criterion is the minimization of the mean-square
distance of the points Z j − 
Zi� to the subspace, taking as the

metric that induced by �̂3
−1, where �̂3

−1 is the empirical cova-
riance matrix of the errors �e j−1 ,e j ,e j+1� contained in Z j and
then

Ti ª arg min
T

� j:Xj�Ui
v j

t�̂3
−1v j , �4�

where v jªZ j − 
Zi�−PT�Z j − 
Zi�� and PTZ
ªarg minu�T�u−Z�t �̂3

−1�u−Z� �see Appendix A�. The dis-

tance induced by �̂3
−1, called the Mahalanobis distance in the

statistical literature, takes into account that the independent
variables s j in the underlying linear model in the variables
�s j−1 ,s j ,s j+1� are also measured with error, and exploits in the
optimal way the information about the structure of the error,
in particular the degree of uncertainty in each of the coordi-
nates of the time series. The solution of Eq. �4� gives unbi-
ased and consistent estimators of the parameters of the model
�11�, which are also those of maximum likelihood if the er-
rors are Gaussian.

If �̂3 is a multiple of the identity matrix, the solution of
Eq. �4� is called the orthogonal least-squares solution and the
Mahalanobis distance coincides with the Euclidean distance.
Hegger and Schreiber �4� also proposed a noise reduction
algorithm for vector time series based on local orthogonal
projections onto optimal linear subspaces, but taking as the
metric on R3d one that gives almost all the weight to the
d-central coordinates of the data points. This weight is the
same for the d-coordinates, so all the individual coordinates
are treated as they have the same degree of uncertainty. In
the case of scalar time series, Grassberger et al. �3� proposed
a metric which is designed to exploit the characteristics of
the embedded time series and Cawley and Hsu �1� used the
Euclidean metric.

B. Adaptive neighborhood construction

In the case of a clean time series, Ti is obtained as in Eq.
�4� using the neighborhood �s j : �s j −si�t�s j −si��r0

2�, where r0
is fixed �and should tend to zero as N tends to infinity�. For
the estimation of a d-dimensional linear subspace, there are
needed at least d+1 points s j such that the corresponding
vectors z j − 
zi� �see Eq. �2�� are linearly independent. The
value of r0 must guarantee this condition. Furthermore, since
f is not a linear function, the clean data do not belong to the
tangent spaces and the estimates of Ti have more statistical
robustness if the number of points used is greater than d+1.

For noisy time series, the optimal subspace obtained using
the neighborhood �X j : �X j −Xi�t�X j −Xi��r0

2� may be far
from the optimal linear subspace for the clean data. This is
due to the noise, which introduces false neighbors in the
neighborhoods and it separates points which are close in the
clean time series. The neighborhoods must be sufficiently
large as to guarantee that a significant portion of the data
within them corresponds to close neighbors for the clean
time series. It is desirable to eliminate from the neighbor-
hoods as many false neighbors as possible. Furthermore, the
sizes of such neighborhoods should be reduced in accor-
dance with the noise reduction occurring as the iterative pro-
cess progresses.

On the other hand, since the uncertainties of the indi-
vidual coordinates of the time series may be different, the
Euclidean distance is not the most appropriate for the con-
struction of the neighborhoods. We use the distance induced

by �̂1
−1, where �̂1 is the estimate of the d�d covariance

matrix of the error in the time series X. This gives a neigh-

borhood of the form �X : �X−Xi�t�̂1
−1�X−Xi��r�, where r is

a value which depends on the noise level and on the value r0
we consider suitable in the case of N noise-free data points.
The value of r is fixed as small as possible while guarantee-
ing, with a given confidence level 1−�0, that the relevant
information is contained in the neighborhoods �see Appendix
B for details�. Figure 1 shows these neighborhoods at two
points of a noisy Henon time series.

C. Further details of the algorithm

1. Estimation of �1 and �3

An estimate �̂3 of the sample covariance matrix of the
errors in �Z j , j=2, . . . ,N−1� is needed for the estimation of

TABLE I. Sample mean 
�RP�2� and sample standard deviation s�RP�2
�in parentheses� of �RP�2 for Henon

time series corrupted by Gaussian noise with the noise-to-signal levels in each component given in the first
row of the table by RNS.

RNS= �2% ,100%� RNS= �5% ,200%� RNS= �10% ,300%� RNS= �50% ,300%�

N=500 83.28 85.00 84.21 80.66

�2.38� �3.14� �3.96� �2.96�
N=1000 87.34 87.83 86.68 81.82

�2.06� �2.35� �2.91� �2.57�
N=5000 92.46 90.73 88.31 82.92

�1.22� �1.04� �1.50� �1.51�
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the subspaces Ti. An estimate �̂1 of the sample covariance
matrix of the errors in �X j , j=1, . . . ,N� is needed in con-
structing the neighborhoods Ui. We estimate the errors at
iteration k�1 from the corrections made by the algorithm at
such iteration.

Let �ŝi
k , i=1, . . . ,N� be the cleaned time series at iteration

k, which is also the input time series at iteration k+1, and let

ŝi
0=Xi, i=1, . . . ,N. At the first iteration, we take �̂1=I,

where I is the d�d identity matrix and as Ui the neighbor-
hoods which contain a fixed percentage Npoints of the data
points, corresponding to the points closest to Xi in the Eu-
clidean distance. The value of Npoints we choose depends on
an a priori estimation of the noise level. At iteration k+1,

k�1, we take as �̂1 the sample covariance matrix of the
estimated errors

ê j
k
ª ŝ j

k − ŝ j
k−1, j = 1, . . . ,N �5�

at iteration k and as �̂3 the sample covariance matrix of its
three embedding.

2. Minimum and maximum numbers of neighbors

We check that all the neighborhoods Ui contain at least a
given number Nmin�d+1 of neighbors, where Nmin is a pa-
rameter of the algorithm. It applies to the final iterations
mainly to compensate the reduced sizes of the confidence
ellipsoids that for large noise amplitudes and large k result
from the underestimation of the real errors by the estimated
errors given by Eq. �5�. This is because expression �5� re-

flects the convergence of the outputs of the algorithm, but
does not incorporate the remaining errors contained in such
outputs.

In the results of the next section, the value of Nmin taken
at a given iteration is Nminªmax�0.014N ,Nmean−sN�, where
Nmean and sN are the sample mean and the sample standard
deviation of the distribution of the number of points within
each Ui at that iteration.

Another parameter of the algorithm is the maximum Nmax
of the number of points permitted to be contained in a neigh-
borhood Ui. It serves to ensure that at initial iterations and
for noise levels larger than 100%, the neighborhoods do not
contain too large a fraction of the data points. In the results
of Sec. III, we take Nmax=0.25N.

3. Embedding space

We have assumed that the dimension D of the space on
which the unknown dynamics f is defined coincides with the
number d of coordinates of the observed noisy time series
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FIG. 2. �Color� �a� Noisy and �b� clean and cleaned time series
of a Henon time series with N=500 corrupted by Gaussian noise
with noise level RNS= �10% ,300%�.
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FIG. 3. �a� Clean, �b� noisy, and �c� cleaned time series of 1500
data points generated by Lorenz dynamics ��=10, R=28, b=8 /3,
and sampling time 	=0.02� corrupted by Gaussian noise with noise
level RNS= �100% ,10% ,5%�.
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�see in �20,22� how to estimate D when it is unknown�. How-
ever our algorithm can be adapted to the case D�d. Assume
that the observed time series �Xi , i=1, . . . ,N��Rd satisfies
Xi=g�si�+ei, where �ei , i=1, . . . ,N��Rd is an unknown
i.i.d. stochastic time series, si+1= f�si�, i=1, . . . ,N−1, where
f :M �RD→M is the unknown smooth dynamics, and
g :M �RD→Rd is an unknown smooth vector function or
observable. Then Ti will be the best D-dimensional subspace
instead of the best d-dimensional subspace �i.e., the matrix B
in expression �A1� in Appendix A has as columns the vectors
�w3d−D+1 , . . . ,w3d��. Furthermore, if D�d and 3d
2D+1
then the working space R3d �i.e., the three-embedding of the
time series� must be replaced by R�2m+1�d with m such that
�2m+1�d�2D+1 in order to guarantee we have a good re-
construction �23� of the unknown dynamics.

III. NUMERICAL RESULTS

In this section, we show the results obtained applying our
algorithm to time series generated by Hénon and Lorenz dy-
namics corrupted by noise. The Hénon map is given by the
equations

x1�k + 1� = 1 − ax1�k�2 + x2�k�, x2�k + 1� = bx1�k� , �6�

and we take the parameter values a=1.4 and b=0.3. The
Lorenz dynamics is defined by

x1� = ��x2 − x1�, x2� = x1�R − x3� − x2, x3� = x1x2 − bx3.

The equations were integrated using a fourth order Runge-
Kutta algorithm with an integration step of �t=0.001. The
values used for the sampling time 	 and the parameters � ,R,
and b are given in Table II.

In all the examples below, we use uncorrelated and het-
eroskedastic errors with Gaussian distributions. For the con-
struction of the neighborhoods, we take �0=0.01 �see Ap-
pendix B�.

We quantify the noise removed by the algorithm using the
pointwise distance between the clean s and the cleaned ŝ
time series

dP�s, ŝ� ª � 1

N
�
i=1

N

�ŝi − si2�2�1/2

.

If dP�s , ŝ�
dP�s ,X�, then the noise level in ŝ is less than
the noise level in the input time series X. The percentage

of global pointwise noise reduction is Rpª100�1−
dP�s,ŝ�
dP�s,X� �

and that corresponding to the jth coordinate is �RP� j

ª100�1−
dP(�s� j,�ŝ� j)
dP(�s� j,�X� j)

�, where

dP„�s� j,�ŝ� j… ª � 1

N
�
i=1

N

„�ŝi� j − �si� j…
2�1/2

, j = 1, . . . ,d .

Notice that these measures require knowledge of the clean
time series. We use such knowledge only to quantify the
noise level reduction. This information is used neither in the
noise reduction scheme nor in deciding when the algorithm
must stop. Thus the algorithm may work on data generated
by an unknown process. The stopping criterion we use is

related to our adaptive neighborhood construction. As the
iterations increase, the remaining noise level and the size of
the neighborhood Ui must decrease. A clear indication that
further iterations of the algorithm will not reduce the remain-
ing noise is the stabilization of the mean number of points in
the neighborhoods.

We focus our attention on time series of short lengths
corrupted by noises with large amplitudes. We intend to
show through numerical experiments that the combination of
the measurement error theory and the adaptive neighborhood
construction allows us to reduce noises having large ampli-
tudes in one of the components especially if the other com-
ponents of the time series are corrupted by noises of smaller
amplitudes.

The results for a Henon time series corrupted by noise of
large amplitude �up to 300%� in the second component and
by noise of small or moderate amplitude in the first compo-
nent are shown in Table I. For short length time series and
high noise levels, the results of the algorithm depend
strongly on the realization of the error term and also on the
clean time series considered. Thus the noise level reduction
achieved by any noise reduction algorithm must be under-
stood in terms of the distribution of the output of the algo-
rithm. For this reason, we give as results the sample mean

�Rp�2� and the sample standard deviation s�Rp�2

of �Rp�2 ob-
tained from 50 noisy time series.

The results show values of 
�Rp�2� higher than 80% in all
the cases. These values increase with N whereas s�Rp�2

de-
creases with N. For noise levels �RNS�2 up to 200%, the av-
erage global pointwise noise reduction in the second compo-
nent 
�Rp�2� achieves values greater than 90% for time series
with N=5000. The results are very good even for time series
of only 500 data points, although they present greater vari-
ability. For instance, for N=500 and a noise level RNS
= �5% ,200%�, we obtain 
�Rp�2�=85.00% and s�Rp�2

=3.14
and the 50 values of �RP�2 belong to the interval �72.2%,
89.62%�.

Figure 2 shows the output of the algorithm for one of the
50 noisy time series corresponding to a noise level RNS
= �10% ,300%� and N=500. The figure shows that even for a
time series having such a large noise level and such a short
length, the algorithm is able to recover a significant part of
the geometric structure of the clean time series.

The use of adaptive neighborhoods is more relevant for
noises of large amplitude. Then the mean number of neigh-
bors in the initial iterations may be close to Nmax whereas in
the final iterations it is stabilized and close to Nmin. For in-
stance, for a Henon time series with N=1000 and a noise
level RNS= �10% ,300%�, the mean number of neighbors in
Ui at the first iteration is Nmax=250 and at iteration 20, this
mean number is only 25.

Another measure of noise reduction standard in the noise
reduction literature is based on the deviation of the time
series from the deterministic behavior. It assumes that the
dynamics f is known and is defined through

ddyn�ŝ� ª � 1

N − 1 �
i=1

N−1

�ŝi+1 − f�ŝi�2�2�1/2

. �7�

If ddyn�ŝ�
ddyn�X�, then the cleaned time series emulates
better the dynamics than does the input time series. The per-

REDUCTION OF NOISE OF LARGE AMPLITUDE THROUGH… PHYSICAL REVIEW E 80, 016207 �2009�

016207-5



centage of global dynamical noise reduction is Rdyn

ª100�1−
ddyn�ŝ�
ddyn�X� � and that corresponding to the jth coordinate

is �Rdyn� jª100�1−
(ddyn�ŝ�) j

(ddyn�X�) j
�, where

„ddyn�ŝ�… j ª � 1

N − 1 �
i=1

N−1

��ŝi+1� j − „f�ŝi�… j�2�1/2

, j = 1, . . . ,d .

If f is unknown, a measure R̂dyn of the dynamical noise re-
duction is obtained by replacing f in Eq. �7� by its local
linear estimations.

The values of 
Rp�, 
Rdyn�, and 
�Rdyn�2� for the time se-
ries of Table I differ slightly from 
�Rp�2� and are omitted for
the sake of clarity. The only significant difference is for a
noise level RNS= �50% ,300%�, where the values of 
Rp� and

Rdyn� are around 60% and 70% respectively, which are
values significantly smaller than the values of 
�RP�2� in
Table I.

We have tested in all these examples that the stopping
criterion based on the stabilization of the mean number of
points within the neighborhoods gives results analogous to
those obtained using as the stopping criterion the stabiliza-
tion of RP or Rdyn, which criteria require knowledge of the
clean time series or f . A stopping criterion based on the

stabilization of R̂dyn, which does not require additional infor-

mation, gives poorer results because R̂dyn stabilizes at high
values even when Rp and Rdyn indicate that the algorithm is
still able to reduce a significant part of the remaining noise.

Our algorithm estimates very effectively the initial
noise levels in each of the components of a noisy time series.

Such estimations are given by �R̂NS� jª��i=1
N ��Xi−ŝi� j�2

�i=1
N ��ŝi� j�2 , j

=1, . . . ,d. For instance, the mean of the values of R̂NS

ª ��R̂NS�1 , �R̂NS�2� obtained from 50 Henon time series of
1000 data points corrupted by Gaussian noise with noise

level RNS= �2% ,100%� is R̂NS= �2.012% ,100.803%� and the
corresponding vector of standard deviations is �0.074, 2.89�.

Some results obtained for Lorenz time series are shown in
Table II. These two examples differ in the values of the pa-
rameters in the Lorenz dynamics and in the sampling times.
In both cases RNS= �100% ,10% ,5%� so the noise level is
large in the first component and moderate in the other two

components. In fact, since the mean value of the z compo-
nent of the clean time series is not zero, �RNS�3=5% is
equivalent to 15% noise level in terms of the standard devia-
tion of z in the clean time series. In this case, f is unknown
and the values of 
Rdyn� and 
�Rdyn�1� of the table are ob-
tained by approximating f using the fourth-order Runge-
Kutta method used to generate the clean time series. The
values of the dynamical noise reduction are significantly
greater than the values of pointwise noise reduction, achiev-
ing values of 
�Rdyn�1� close to 95% for the second set of
parameters, for all the lengths considered. Figure 3 shows the
output of one of the noisy time series of Table II. It can be
seen that the algorithm is able to recover a significant part of
the geometric structure and the dynamics of the clean time
series.

IV. CONCLUSIONS

We have proposed a noise-reduction algorithm that com-
bines the measurement error models theory with an adaptive
neighborhoods selection based on a statistical test. The algo-
rithm works efficiently for short-time series corrupted by
noises of large amplitude. The results could be improved by
the consideration of nonlinearity effects added to our adap-
tive neighborhood method. The size of the neighborhoods
should be fixed as a compromise between the effects of non-
linearity �see �3�� and the amount of information in the
neighborhoods.

Our results show the possibility of detection and forecast-
ing of deterministic scalar time series of small amplitudes
buried in observational noises of amplitudes much larger
than that of the signal if they are coupled through a smooth
dynamical system to other state variables which can be ob-
served with lower uncertainties. The high performance of our
algorithm for short length time series gives hope that the
scope of application of this method might extend to research
in the social sciences.
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TABLE II. Sample means and sample standard deviations �in parentheses� of �RP�1, �Rdyn�1, �RP�, and
�Rdyn� in Lorenz time series corrupted by Gaussian noises with the noise-to-signal levels in each component
given in the first row of the table by RNS.

N

RNS= �100% ,10% ,5%�
�=16,R=45.92,b=4,	=0.03

RNS= �100% ,10% ,5%�
�=10,R=28,b=8 /3,	=0.02


�RP�1� 
�Rdyn�1� 
RP� 
Rdyn� 
�RP�1� 
�Rdyn�1� 
RP� 
Rdyn�

1500 76.73 86.65 69.70 83.94 79.80 94.03 73.79 86.47

�7.54� �7.43� �13.9� �8.13� �3.05� �1.15� �4.3� �1.32�
3000 78.83 88.21 71.86 74.47 81.79 94.74 76.23 87.13

�5.49� �3.63� �11.78� �2.77� �2.34� �0.53� �3.85� �0.75�
5000 81.10 89.79 74.78 86.91 82.32 94.90 77.01 87.27

�1.08� �0.70� �1.12� �0.72� �1.73� �0.81� �1.99� �0.74�
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APPENDIX A: TECHNICAL DETAILS

1. Estimation of the best subspaces and the projection matrix

The solution of Eq. �4� is �see Appendix in Ref. �10��
Tiªspan��̂3w1 , . . . , �̂3wd�, where �w1 , . . . . ,w3d� is an or-
thonormal basis of eigenvectors of the matrix MZZ

ª

1
#Ui

� j:Xj�Ui
�Z j − 
Zi���Z j − 
Zi��t in the metric of �̂3, i.e.,

MZZw j = � j�̂3w j, j = 1, . . . ,3d

and

w j�̂3wk =  jk, j,k = 1, . . . ,3d ,

where �1� ¯ ��3d are the corresponding eigenvalues. Such
a basis of eigenvectors is given by the columns of the matrix
Q�−1/2H, where Q is a matrix whose columns are an ortho-

normal basis of eigenvectors of �̂3 �in the Euclidean metric�,
� is the diagonal matrix of eigenvalues of �̂3, and the col-
umns of H are an orthonormal basis of eigenvectors of the
matrix �−1/2QtMZZQ�−1/2.

The matrix of the projection onto the subspace Ti is

I− �̂3BBt, where I is the 3d�3d identity matrix and B is the
matrix whose columns are �w2d+1 , . . . ,w3d�. Then Eq. �3� can
be written as

ẑ j
i = Z j − �̂3BBt�Z j − 
Zi�� for X j � Ui. �A1�

2. Problem of multiple 3d-dimensional estimations

Since any point X j belongs to many neighborhoods Ui, we
take the average of all the values �ẑ j

i :X j �Ui� �see Eq. �3�� as
the final estimation of z j, i.e.,

ẑ j ª
1

#�i:X j � Ui�
�

�i:Xj�Ui�
ẑ j

i, j = 2, . . . ,N − 1. �A2�

This is a 3d-dimensional time series that is not the three-
embedding of a d-dimensional time series so there remains
the problem of estimating the deterministic part of the ob-
served time series.

3. Estimation of the deterministic component

Let �ẑ j�i denote the ith coordinate of ẑ j, j=2, . . . ,N−1.
Since ẑ j = �ŝ j−1 , ŝ j , ŝ j+1�, this time series gives as estimations
of �s j�i , j=3, . . . ,N−2, the three values �ẑ j−1�2d+i, �ẑ j�d+i, and
�ẑ j+1�i. These are the estimations of s j obtained from the past,
the present, and the future. We take a weighted average of
these three values as the estimation of �ŝ j�i, i=1, . . . ,d, with
weights wl

i , l=1, . . . ,3 related with the sample variances of
the coordinates of the corrections �ªZ− ẑ and then

�ŝ j�i = �
l=1

3

wl
i�ẑ j−1+�l−1���3−l�d+i

for j = 3, . . . ,N − 2; i = 1, . . . ,d . �A3�

This cleaned time series �ŝ j , j=1, . . . ,N� will be the input
time series in the next iteration of the algorithm.

The combination of the averages �A2� and �A3� increases
the statistical robustness of the estimations without requiring
controls for avoiding large corrections as do many noise re-
duction algorithms. These smoothing devices partially over-
come the problems of the maximum likelihood estimates
pointed out by Judd �12�.

APPENDIX B: THE ADAPTIVE NEIGHBORHOOD
CONSTRUCTION

If we assume that the errors �ei� have a N�0,�1� distribu-
tion, then �Xi−si�t�1

−1�Xi−si� has a �2 distribution with d
degrees of freedom and

�X:�X − Xi�t�1
−1�X − Xi� � �d

2��0��

provides a 100�1−�0�% confidence ellipsoid for si, where
�d

2��0� is the number such that Pr��d
2��d

2��0��=�0.
Since in general �1 is unknown, it is replaced by the

sample covariance matrix �̂1. Let T2
ª �Xi−si�t�̂1

−1�Xi−si�.

FIG. 4. �a� Confidence ellipsoid for si and �b� confidence ellip-
soid for B�si ,r0�.
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Then �N−d�
d�N−1�T

2 is distributed �see �24�� as an F distribution
with degrees of freedom d and N−d.

A 100�1−�0�% confidence ellipsoid for si is given by

�X:�X − Xi�t�̂1
−1�X − Xi� �

d�N − 1�
N − d

Fd;N−d��0��
= �X:�

j=1

d � �Y − Yi� j

�f0� j
�2

� 1�
where YªMtX, �Y� j is the jth coordinate of Y, M is a
matrix whose columns are an orthonormal basis of eigenvec-

tors of �̂1 , �� j , j=1, . . . ,d�, are the eigenvalues of �̂1 and

f0ª
d�N−1�

N−d Fd;N−d��0�. It is an ellipsoid centered at Xi whose

axes are the eigenvectors of �̂1 and with jth semiaxis of
length �f0� j �see Fig. 4�a��. Since we want a confidence
ellipsoid for the points �s j : �s j −si�t�s j −si��r0

2�, we take
2�f0� j +r0 as the length of the jth semiaxis instead of �f0� j

�see Fig. 4�b�� and therefore

Ui ª �X:�
j=1

d � �Y − Yi� j

2�f0� j + r0
�2

� 1� � Rd �B1�

is the neighborhood of Xi that we consider.
We refine this neighborhood slightly by removing from

Ui those points which are neighbors only due to the noise.
We construct a neighborhood Vi�R3d of Zi using the same
procedure we use to build the neighborhood Ui of Xi, and
we remove from Ui the points X j for which Z j
= �X j−1 ,X j ,X j+1��Vi.

A parameter needed for the construction of the neighbor-
hoods Ui at each iteration is r0. In the results of Sec. III, we
take r0=rmean+sr, where rmean and sr are the sample mean
and the sample standard deviation of the distribution of radii
corresponding to the minimum radius r needed to get 0.014N
neighbors in the balls centered at Xi, i=1, . . . ,N, and with
radius r with respect to the Euclidean metric. Since the noise
is reduced as the iterations increase, the value of r0 de-
creases.
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